
LA-UR 97-480

Approved for public release; distribution is unlimited

Modifying Edges of a Network to Obtain Short
Subgroups

Authors: K.U. Drangmeister, S.O. Krumke, M.V. Marathe,
H. Noltemeier, S.S. Ravi

September 1996

LOS ALAMOS
NATIONAL LABORATORY
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is
operated by the University of California for the U.S. Department of Energy under
contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that
the U.S. Government retains a non-exclusive, royalty-free license to publish or
reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher
identify this article as work performed under the auspices of the U.S. Department of
Energy. The Los Alamos National Laboratory strongly supports academic freedom and
a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse this viewpoint of a publication or guarantee its technical correctness.

Modifying Edges of a Network to Obtain

Short Subgraphs

K. U. Drangmeister 1 S. O. Krumke 1 M. V. Marathe 2

H. Noltemeier 1 S. S. Ravi 3

September 17, 1996

Abstract

This paper considers problems of the following type: We are given an edge

weighted graph G = (V;E). It is assumed that each edge e of the given network

has an associated function ce that speci�es the cost of shortening the edge by a

given amount and that there is a budget B on the total reduction cost. The goal

is to develop a reduction strategy satisfying the budget constraint so that the

total length of a minimum spanning tree in the modi�ed network is the smallest

possible over all reduction strategies that obey the budget constraint.

We show that in general the problem of computing an optimal reduction

strategy for modifying the network as above is NP-hard even for simple classes

of graphs and linear functions ce. We present the �rst polynomial time approxi-

mation algorithms for the problem, where the cost functions ce are allowed to be

taken from a broad class of functions. We also present improved approximation

algorithms for the class of treewidth-bounded graphs when the cost functions are

linear. Our results can be extended to obtain approximation algorithms for more

general network design problems such as those considered in [GW92, GGP+94].

Keywords: NP-hardness, Approximation Algorithms, Network Design, Spanning-

Tree.

1Department of Computer Science, University of W�urzburg, Am Hubland, 97074 W�urzburg, Ger-

many. Email: fdrangmei,krumke,noltemeig@informatik.uni-wuerzburg.de.
2Los Alamos National Laboratory, P.O. Box 1663, MS K990, Los Alamos, NM 87545, USA. Email:

madhav@c3.lanl.gov. The work is supported by the Department of Energy under Contract W-7405-

ENG-36.
3Department of Computer Science, University at Albany { SUNY, Albany, NY 12222, USA. Email:

ravi@cs.albany.edu.

1

1 Introduction

We study network design problems where the goal is to �nd optimal improvement

strategies for modifying a given network. Such problems arise in diverse areas includ-

ing design of high speed communication networks [KJ83], video on demand [KPP93],

teleconferencing [KPP92a] and VLSI design [CKR+92, ZPD94]. For example, consider

the following scenario that arises in the cost/bene�t analysis for improving commu-

nication networks. A large communication company is approached by a client with

the requirement to interconnect a set of cities housing the client's o�ces, e.g. banks

with a high transaction rate between the sites. The company has a list of feasible

links that it can use to construct a network to connect these cities. Each link has a

construction cost associated with it. One of the main concerns of the client is to build

a communication network of minimum cost. This is the ubiquitous minimum spanning

tree problem. With the advent of optical communication technology, the client would

like to upgrade the communication network and has allocated a certain budget to do

so. In general, there is a cost for improving each link in the existing network by a unit

amount. The goal is to design a strategy to upgrade the links of the network so that

the total cost of upgrading the links is no more than the allocated budget, and the cost

of a minimum spanning tree for the upgraded network is the least over all the possible

improvements of the network satisfying the budget constraint.

The problem stated above is an example of an edge based network improvement

problem. In this paper we focus on such problems for undirected graphs. The nodes

of the graph represent the set of sites (o�ces). A cost function speci�es the cost of

improving an edge by a given amount. For a given budget B and a class of subgraphs

S, the goal is to �nd a reduction strategy such that the total cost of reduction is at most

B and the minimum cost subgraph S 2 S (with respect to some measureM) under the

upgraded costs is the best over all possible reduction strategies which obey the budget

constraint. In this paper, we restrict our attention to cases in which M is the total

cost or the diameter of the subgraph. The class of subgraphs S considered includes

spanning trees, Steiner trees, generalized Steiner forests, etc. A main contribution of

this paper is a general technique for obtaining the �rst polynomial time approximation

algorithms for a large class of edge based network improvement problems.

The remainder of the paper is organized as follows. Section 2 contains basic de�ni-

tions and formal statements of the problems considered in this paper. It also discusses

a framework for evaluating approximation algorithms. Section 3 summarizes the re-

sults in the paper. Section 4 discusses related work. In Section 5, we briey discuss

the structure of optimal solutions. Section 6 contains the complexity results for solving

the problems optimally. Section 7 contains our approximation algorithms for general

graphs. Section 8 presents a faster approximation algorithm for linear cost functions.

Section 9 discusses the extensions of these algorithms to other subgraph classes and Sec-

tion 10 discusses improved approximations for the class of treewidth bounded graphs.

Finally, Section 11 contains directions for future research.

2

2 Problem Formulation and Approximation Frame-

work

Let G = (V;E) be an undirected graph. Associated with each edge e 2 E, there are

nonnegative values as follows: `(e) denotes the length or the weight of the edge e and

`min(e) denotes the minimum length to which the edge e can be reduced. Consequently,

we assume throughout the presentation that `min(e) � `(e). The nonnegative cost

function ce indicates how expensive it is to reduce the length of e by a certain amount.

We assume without loss of generality that ce(0) = 0 for all edges e 2 E.4

A reduction strategy (or simply reduction) on the edges of G speci�es how to reduce

the `-length of each edge e to a value in the range [`min(e); `(e)]. Given a budget B,

we de�ne a feasible reduction to be a nonnegative function r de�ned on E with the

following properties: For all edges e 2 E, `(e)� r(e) � `min(e) and
P

e2E ce(r(e)) � B.

If r is a (feasible) reduction, we can consider the graph G with edge weights given by

the \reduced lengths", namely (`� r)(e) := `(e)� r(e) (e 2 E).

Let S be a subgraph class and let S 2 S be a subgraph of G. The total length of S

under the weight function `, denoted by `(S), is de�ned to be the sum of the lengths

of the edges in S. We denote a minimum total length subgraph in S with respect

to the weight function ` by S�
G(`). Similarly, if r is a (feasible) reduction in G then

S�
G(`�r) denotes a minimum total length subgraph with respect to the reduced lengths

`(e)� r(e) (e 2 E). We omit the graph G in the subscript whenever such an omission

does not cause any ambiguity. In what follows we will often use the same symbol for

a subgraph and its cost and the intended meaning will be clear from the context.

For some versions of the problems discussed in the sequel, we impose some ad-

ditional constraints on permissible reductions. Thus, we obtain the following three

cases:

1. For each edge e, the reduction must either shorten the length of the edge to `min(e)

or leave the length unchanged. Formally, we require each (feasible) reduction to

satisfy the condition r(e) 2 f0; `(e) � `min(e)g for all e 2 E. These reductions

will be referred to as 0/1-reductions.

Note that another way to view a 0/1-reduction r is to use it to model the insertion

of alternative edges to the graphG, with the reduction of the edge e corresponding

to the insertion of a new edge ê parallel to e with `(ê) = `min(e).

2. The reduction r must be an integer valued function; i.e., for each edge e, r(e)

must be an integer in f0; 1; : : : ; `(e)�`min(e)g. We denote this type of reductions

by I-reductions (\integer reductions").

3. The third case is the least restricted one. Here we allow a reduction r to take

on rational values; i.e., for each edge e, the reduction can be a rational value

4Any reduction will incur a minimum cost of
P

e2E
ce(0) and we can subtract this sum from the

budget B in advance.

3

in [0; `(e) � `min(e)]. We refer to these reductions as R-reductions (\rational

reductions").

The reader may wonder why it is necessary to look at the various types of reduction

strategies. As the subsequent sections show, for several problems considered here, the

complexity of obtaining an optimal solution depends on the type of reduction strategy

used. In contrast, the approximation algorithms we devise generally work for any of

the three variants simultaneously.

We are now ready to formulate the problems studied in this paper. Our formulation

is based on the work of [MRS+95]. A generic edge based network improvement problem

(f1; f2;S), is de�ned by identifying two minimization objectives, f1 and f2, from a set of

possible objectives, and specifying a membership requirement in a class of subgraphs,

S. The problem speci�es a budget value B on the �rst objective, f1, under ce cost

function, and seeks to �nd a subgraph S 2 S such that the cost of S is a minimum

with respect to the second objective, f2, under the modi�ed cost function `� r. The

cost of upgrading the network as measured by f1 under ce should be no more than B.

For the budgeted objective f1, we focus on the total cost of upgrading the network. As

mentioned earlier, upgrading of edges can be carried out by a reduction r that is 0/1 or

integral or rational. We use these three types to further classify f1. Thus f1 2 f 0/1-

Upgrade-Total Cost, I-Upgrade-Total Cost, R-Upgrade-Total Cost g.

For the minimization objective f2, we consider the total cost of all the edges in the

subgraph. Finally, for the problems considered here S 2 f Spanning Tree, Steiner

Tree, Generalized Steiner Tree, g, etc.

For example, the improvement problem for obtaining a spanning tree of small length

described in the earlier sections is the (R-Upgrade-Total-Cost, Total Cost,

Spanning Tree) problem. In this problem, the goal is to �nd a reduction r of cost

at most B such that MSTG(` � r) has the least possible value. Similarly, the goal of

the (0/1-Upgrade-Total-Cost, Total Cost, Steiner Tree) problem is to �nd

a shortest Steiner tree in the modi�ed network under 0/1-reductions that obeys the

budget constraint.

Most of the network improvement problems considered in this paper are NP-hard. In

fact, for several problems (e.g. (0/1-Upgrade-Total-Cost, Total Cost, Steiner

Tree)) we show that it is hard to �nd a solution that is near-optimal with respect to

the objective, if the solution is required to satisfy the budget constraint. Given these

hardness results, we focus on �nding e�cient approximation algorithms that guarantee

a solution which is approximate in terms of both the budget and the objective function.

We �rst discuss a measure to evaluate approximation algorithms for such network

improvement problems.

De�nition 2.1 Let �; � � 1 be constants. We say that an algorithm is an (�; �)-

approximation algorithm for a (f1; f2;S) problem, if for each instance, the algorithm

returns a reduction r and a subgraph S 2 S such that

1. The cost of the reduction (under f1) is at most �B and

4

2.
(`� r)(S)

S�
G(`� r�)

� �; (1)

where r� denotes an optimal edge-reduction of cost at most B, S�
G(`�r�) denotes

the cost (under f2) of an optimal subgraph in the network with cost function `�r�

and (`� r)(S) denotes the cost of the subgraph S with cost function `� r.

Example 2.2 Consider the graphs given in Figure 1. Figure 1(a) shows a graph G

where each edge e is associated with the three values (`(e); `min(e); ce). The third

parameter ce represents the cost of reducing the length of the edge by a unit amount;

i.e., the cost function on each edge in this simple example is linear and is given by

ce(t) = ce � t. The result of a modi�cation of G is shown in Figure 1(b). The edges

belonging to the minimum spanning tree are drawn as dashed lines. The modi�cation

corresponding to Figure 1(b) involves a cost of 24 and the weight of the resulting tree

is 7. Figure 1(c) shows the graph with edge lengths resulting from a reduction that

is optimal among all reductions of cost no more than 22. There, the weight of the

spanning tree resulting from the reduction is 4. Thus, the reduction of Figure 1(b) is

a (7=4; 24=22)-approximation to an optimal solution with budget 22.

6

v2

(6; 1; 1)

v4

(6; 1; 2)

v3

(2; 1; 2)

(7; 2; 3) (6; 1; 4)

v1

(a) The original graph G

46

2

17

(b) Modi�cation of G
with cost 24

(c) Optimal Modi�cation
for a budget of 22

2 6

1

1

Figure 1: An example of a graph modi�cation via edge reductions.

3 Summary of Results

Here, for the �rst time in the literature, we study the complexity and approxima-

bility of several network improvement problems. We present both NP-hardness results

and approximation algorithms with provable performance guarantees for the problems

studied here. Wherever possible, we state the hardness results for the most restricted

5

versions of problems (e.g. for the spanning tree version) and the approximation results

for the most general versions of problems (e.g. for the Steiner tree version). Also, our

hardness results use simple linear cost functions while our approximation algorithms

can handle a variety of cost functions.

1. We observe that the (0/1-Upgrade-Total-Cost, Total Cost, Spanning

Tree) and (0/1-Upgrade-Total-Cost, Diameter, Spanning Tree) prob-

lems are NP-hard even when the underlying network is a tree and the reduction

cost functions are linear. We show that the (R-Upgrade-Total-Cost, Total

Cost, Spanning Tree) problem is NP-hard even when the underlying network

is series-parallel and the reduction cost functions are linear.

2. For general graphs, we show that unless P = NP, for any � > 1, there is

no polynomial time (�; 1) or (1; �) approximation algorithm for the problems

(0/1-Upgrade-Total-Cost, Total Cost, Steiner Tree), (R-Upgrade-

Total-Cost, Total Cost, Steiner Tree) and (I-Upgrade-Total-Cost,

Total Cost, Steiner Tree).

3. For general graphs, we also show that unless NP � DTIME(N log logN), for any

" > 0 and 0 < � < 1, there is no (11=10 � "; � lnB) approximation for the

problems (0/1-Upgrade-Total-Cost, Diameter, Spanning Tree) and (I-

Upgrade-Total-Cost, Diameter, Spanning Tree).

4. For general graphs, given any �xed > 0, we present a (1 + 1=; 1 +) approx-

imation algorithm for the (R-Upgrade-Total-Cost, Total Cost, Span-

ning Tree) problem. This algorithm can accommodate a variety of reduction

cost functions. When the reduction cost functions are linear, we present an e�-

cient implementation of the approximation algorithm using Megiddo's technique

[Meg83]. For graphs of bounded treewidth, we give an improved approximation

algorithm with a performance of (1 + "; 1 + ") for any �xed " > 0.

5. For general graphs, we present an (O(logn);O(logn)) approximation algorithm

for the (R-Upgrade-Total-Cost, Diameter, Spanning Tree) problem.

Our approximation algorithm for (R-Upgrade-Total-Cost,Total Cost, Span-

ning Tree) can be extended signi�cantly. For example, using our ideas in conjunction

with the results of Goemans et. al. [GGP+94], we can obtain similar approximation re-

sults for �nding budget constrained minimum-cost generalized Steiner trees, minimum-

cost k-edge connected subgraphs and other network design problems speci�ed by weakly

supermodular functions.

4 Comparison with Related Work

As far as we know, the problems considered in this paper have not been previously

studied. Recently in an independent e�ort Frederickson and Solis-Oba [FSO96] con-

sidered the problem of increasing the weight of a minimum spanning tree in a graph

6

subject to a budget constraint where the cost functions are assumed to be linear in

the weight increase. In contrast to the results presented here, they show that while

the integral case is NP-hard, the rational case is solvable in polynomial time using

tools from matriod theory. Berman [Ber92] considers the problem of shortening edges

in a given tree to minimize its shortest path tree weight and shows that the problem

can be solved in strongly polynomial time. Plesnik [Pl81] has shown that the budget-

constrained minimum diameter problem (i.e., given a graph G = (V;E) with a length

`(e) and cost c(e) for each edge e 2 E and a cost budget B, select a subset E 0 of E so

that the total cost of edges in E 0 is at most B and the diameter of the graph formed by

E 0 is a minimum among all subsets satisfying the budget constraint) is NP-hard. He

also shows that, if the budget constraint cannot be violated, then even approximating

the diameter to within a factor of less than 2 is NP-hard. It can be seen that the

problem considered by Plesnik is an edge-based network improvement problem under

0/1-reductions where there is a budget on the total upgrade cost and the goal is to im-

prove the diameter of the network. The important di�erence between this problem and

the (0/1-Upgrade-Total-Cost, Diameter, Spanning Tree) problem considered

here is that the former problem does not require the subgraph induced by the modi�ed

edges to be a tree. Phillips [Phi93] studies the problem of �nding an optimal strategy

for reducing the capacity of the network so that the residual capacity in the modi�ed

network is minimized. The problems studied here and in [Phi93, Ber92] can be broadly

classi�ed as types of bicriteria problems. Recently, there has been substantial work

on �nding e�cient approximation algorithms for a variety of bicriteria problems (see

[KP95, Has92, MRS+95, RMR+93, Rav94, War92] and the references therein).

5 Structure of an Optimal Solution

15

T2

T1

(v1; v4)

(v1; v2)

(v2; v4)

(v2; v3)

(v3; v4)

(v2; v4)

Budget5 10 15

4
5

14

Figure 2: Remaining weight of the trees T1 and T2 as a function of the budget.

7

In this section we comment on the structure of optimal solutions to the (R-Upgrade-

Total-Cost, Total Cost, Spanning Tree) problem for linear reduction costs on

the edges, that is, ce(t) = ce � t for all e 2 E and some constants ce. We also mention

some special cases of the problem that can be solved in polynomial time.

First, suppose that the given budget B is zero. Then (R-Upgrade-Total-Cost,

Total Cost, Spanning Tree) reduces to the well known minimum spanning tree

problem (with length function `(e)), and is known to be optimally solvable by classical

algorithms (e.g. Kruskal's algorithm). Similarly, if B = +1 (i.e., there is no bound on

the cost of upgrading the network), the (R-Upgrade-Total-Cost, Total Cost,

Spanning Tree) problem again reduces to the minimum spanning tree problem but

this time with edge-lengths given by `min.

Optimal solutions to (R-Upgrade-Total-Cost,Total Cost, Spanning Tree)

also exhibit some structure in the general case (i.e., B 62 f0;+1g). Any (feasible) re-

duction r induces a tree in a natural way, namely a minimum spanning tree Tr in the

graph with the modi�ed edge lengths. Observe that the quality of the solution pro-

duced via the reduction r depends solely on the weight of Tr, so all the cost incurred in

upgrading edges not in Tr is wasted. Moreover, for any �xed tree T in G, the Greedy-

strategy that successively reduces a cheapest available edge is an optimal reduction

strategy. Thus, if we already knew a minimum spanning tree Tr� corresponding to

an optimal reduction r�, we could solve (R-Upgrade-Total-Cost, Total Cost,

Spanning Tree) quite easily.

This observation also suggests a very simple exponential time algorithm for solving

(R-Upgrade-Total-Cost, Total Cost, Spanning Tree): Enumerate all span-

ning trees in G, apply the above Greedy-strategy to each of them and then select the

best solution. Unfortunately, a graph G with n nodes can have nn�2 di�erent spanning

trees.

We now discuss the sensitivity of optimal reduction strategies to changes in the

given budget B. If we �x a spanning tree and plot the weight of that tree as a function

of the money spent on it in a Greedy manner, we see that each piece corresponds to a

budget range where one particular edge e is shortened. Thus it is easy to see that the

piece has slope �1=ce.

Figure 2 shows the plots corresponding to the tree T1 consisting of the edges (v2; v3),

(v2; v4), (v1; v2) and the tree T2 consisting of the edges (v3; v4), (v2; v4) and (v1; v4) taken

from the example graph of Figure 1. As can be seen from Figure 2, the plots for di�erent

trees can cross each other multiple times. If we plot the weights of all spanning trees

on the same set of axes, the lower envelope gives the optimal remaining weight per

budget. It is easy to see that the lower envelope can have an exponential number of

linear pieces.

8

6 Hardness Results

In this section, we present NP-hardness and non-approximability results for the prob-

lems considered in this paper. We �rst show (Section 6.1) that several of these prob-

lems are NP-hard even for simple classes of graphs (trees and series-parallel graphs).

Next, for general graphs, we strengthen our results and provide (Section 6.2) non-

approximability results for several problems.

6.1 Results for Special Classes of Graphs

It is easy to see (c.f. Section 5) that when G is a tree and the cost functions ce are all lin-

ear, (R-Upgrade-Total-Cost, Total Cost, Spanning Tree) and (I-Upgrade-

Total-Cost, Total Cost, Spanning Tree) problems can be solved optimally in

polynomial time by a Greedy-type algorithm that simply keeps on reducing the length

of the cheapest available edge. In contrast, as shown in the next proposition, the

(0/1-Upgrade-Total-Cost, Total Cost, Spanning Tree) problem is NP-hard

even when G is a tree. The same construction also yields the NP-hardness of (0/1-

Upgrade-Total-Cost, Diameter, Spanning Tree).

Proposition 6.1 The problems (0/1-Upgrade-Total-Cost, Total Cost, Span-

ning Tree) and (0/1-Upgrade-Total-Cost, Diameter, Spanning Tree) are

NP-hard, even if the underlying network G is a tree. This result remains true, even if

ce(t) = t and `min(e) = 0 for all e 2 E.

Proof: The proof is by a reduction from the Partition problem which is known to be

NP-complete [GJ79]. An instance of Partition consists of a set A = fx1; x2; : : : ; xng

of integers, where
Pn

i=1 xi is even, and the question is whether there is a subset A0

of A such that the sum of the integers in A0 is equal to 1
2

Pn
i=1 xi. Starting from

an instance of Partition, we produce an instance of (0/1-Upgrade-Total-Cost,

Diameter, Spanning Tree) (which is also an instance of (0/1-Upgrade-Total-

Cost, Diameter, Spanning Tree)) as follows. The graph G is a simple path on

n + 1 nodes. Let v0, v1, : : :, vn denote the nodes in the order in which they appear in

the path. For edge e = (vi�1; vi) (1 � i � n), let `(e) = xi, `
min(e) = 0 and ce(t) = t.

Further, let the cost budget B = 1
2

Pn
i=1 xi. Since we are considering 0/1-reductions,

the cost of upgrading edge e is either 0 or xi, and the length of e either remains as xi or

is decreased to 0. Using this fact, it can be veri�ed that there is a feasible 0/1-reduction

that produces a spanning tree of total length (which is equal to its diameter) 1
2

Pn
i=1 xi

if and only if the Partition instance has a solution. 2

Next, we will prove that the (R-Upgrade-Total-Cost, Total Cost, Span-

ning Tree) problem is NP-hard even for very restricted classes of graphs and the

most simple reduction cost functions.

Theorem 6.2 (R-Upgrade-Total-Cost, Total Cost, Spanning Tree) is NP-

hard, even when restricted to series-parallel graphs with linear reduction cost functions

ce (i.e., ce(t) = ce � t for all e 2 E).

9

Proof: We use a reduction from Continuous Multiple Choice Knapsack which

is known to be NP-complete (c.f. [GJ79, Problem MP11, page 247]). An instance of

CMC-Knapsack is given by a �nite set U of n items, a size s(u) and value v(u) for

each item, a partition U1 [� � � [Uk of U into disjoint sets and two integers S and

K. The question is, whether there is a choice of a unique element ui 2 Ui, for each

1 � i � k, and an assignment of rational numbers ri; 0 � ri � 1 to these elements such

that
Pk

i=1 ris(ui) � S and
Pk

i=1 riv(ui) � K.

Given an instance of CMC-Knapsack we construct a graph G = (V;E) in the

following way: We let V = U[fX; T; T1; : : : ; Tkg, E := E1[E2[E3 with E1 := f(X; u) :

u 2 Ug, E2 := f(u; Ti) : u 2 Ui; i = 1; : : : ; kg and E3 := f(Ti; T) : i = 1; : : : ; kg. The

graph constructed this way is obviously series-parallel with terminals X and T .

Tk X

Uk U2

T T2

T1

T3

U3

U1

Figure 3: Graph used in the reduction from Continuous Multiple Choice Knap-

sack.

De�ne D := maxfv(u) : u 2 Ug. For each edge (x; u) 2 E1, let `(x; u) :=

D; `min(x; u) := D � v(u); c(x; u) := s(u)=v(u). For all edges e 2 E2 we let `(e) :=

`min(e) := ce := 0, and for all edges e 2 E3 we de�ne `(e) := `min(e) := 3D and ce := 0.

Set the bound B on the total cost to be S.

The graph is shown in Figure 3. The dotted edges are of weight 0 while the dashed

ones have weight 3D. Any MST in G has weight kD + 3D.

By the construction, any feasible reduction can only reduce the length of the edges

in E1. Assume that r is a feasible reduction. Observe that the MST in G with

edge lengths given by (` � r) will always include all edges from E2 (which are of

10

weight 0) and exactly one edge from E3, regardless of which edges from E1 are a�ected

by the reduction. Observe also that for any �xed i 2 f1; : : : ; kg, any MST in the

modi�ed graph will contain exactly one of the edges of the form (X; u0), where u0 2 Ui.

Consequently, reducing the length of more than one edge (X; u0) with u0 2 Ui will not

improve the quality of the solution, but cost money from the budget B. We thus have:

Observation: If r is a feasible reduction for the instance of (R-Upgrade-Total-

Cost, Total Cost, Spanning Tree) de�ned above and the weight of an MST in

the modi�ed graph is Y , then there is always a feasible reduction r0, which for each

i 2 f1; : : : ; kg reduces at most one of the edges (X; u), u 2 Ui and the weight of an

MST with respect to (`� r0) is also equal to Y . 2

Let r be any reduction as de�ned in the above observation and for i = 1; : : : ; k let

ei = (X; ui) be the unique edge from x to Ui a�ected by the reduction. The weight of

an MST in with respect to (`� r) is then given by

3D +
kX
i=1

(`(ei)� r(ei)) = 3D + k �D �
kX
i=1

r(ei): (2)

The cost of reduction r is given by

kX
i=1

r(ei)cei =
kX
i=1

r(ei) �
s(ui)

v(ui)
=

kX
i=1

r(ei)

v(ui)
� s(ui) � B: (3)

We now prove the following: There is a feasible reduction r such that MSTG(`�r) �

(3+k)D�K, if and only if there exists a choice of a unique element ui 2 Ui, 1 � i � k

and an assignment of rational numbers ri; 0 � ri � 1 to these elements such thatPk
i=1 ris(ui) � B and

Pk
i=1 riv(ui) � K.

First, assume that there is a feasible reduction r such that MSTG(` � r) � (3 +

k)D�K. Without loss of generality, we can assume that r has the properties as stated

in the above observation. Then for i = 1; : : : ; k there is at most one edge ei = (X; u)

with u 2 Ui such that r(ei) > 0. If there is such an edge ei, we de�ne

ri :=
r(ei)

v(ui)
=

r(ei)

`(ei)� `min(ei)
(4)

and let ui := u. If for all edges (X; u) with u 2 Ui we have r(ei) = 0, we simply let

ri := 0 and choose ui 2 U arbitrarily. It follows readily from the de�nition and the

feasibility of the reduction r that ri 2 [0; 1]. Moreover, using Equation (3) we see thatPn
i=1 ris(ui) � B � B1. Using equation (2) and the fact that the weight MSTG(`� r)

is no more than (3 + k)D �K we obtain that
nX
i=1

riv(ui) =
nX
i=1

r(ei)

v(ui)
� v(ui) =

nX
i=1

r(ei) � K:

Conversely, if we can pick unique elements ui from the sets Ui and �nd rational numbers

ri 2 [0; 1] such that
Pn

i=1 ris(ui) � B and
Pn

i=1 riv(ui) � K. We can de�ne a reduction

r by r(X; ui) := riv(ui) = ri(`(x; ui)� `min(x; ui)) for i = 1; : : : ; k and r(e) := 0 for all

other edges. It follows that r is indeed feasible, and using equation (2) we see that the

MST in the modi�ed graph is no heavier than (3 + k)D �K. 2

11

6.2 Non-approximability Results for General Graphs

The above hardness results show that for special classes of graphs, the problems are

weakly NP-hard. We now show non-approximability results for several problems for

general graphs. These results are obtained by suitable reductions from Set Cover

de�ned below.

De�nition 6.3 An instance of Set Cover consists of a set Q of ground elements

fq1; : : : ; qng, a collection Q1; : : : ; Qm of subsets of Q and an integer k. The question is

whether one can pick at most k sets whose union is equal to Q.

6.2.1 Results for Total Cost Problems

Theorem 6.4 Unless P = NP, for any � > 1, there is no polynomial time (�; 1) approx-

imation for the (0/1-Upgrade-Total-Cost, Total Cost, Steiner Tree) prob-

lem even when restricted to bipartite graphs.

Proof: Suppose there is a polynomial time (�; 1) approximation algorithm A for the

problem for some � > 1. We will show that A can be used to solve an arbitrary instance

of Set Cover.

Given an instance of Set Cover, we construct the natural bipartite graph with

one partition for set nodes (denoted by Q1, Q2, : : :, Qm) and the other for element

nodes (denoted by q1, q2, : : :, qn), and edges representing element inclusion in the sets.

To this bipartite graph, we add an \enforcer" node (denoted by x) which is adjacent

to each of the set nodes. Let G denote the resulting bipartite graph. The set R of

terminals for the Steiner tree instance is given by R = fx; q1; q2; : : : ; qng. For each

edge e in G, we set `(e) = 1 and `min(e) = ", where " is a positive quantity chosen so

that

" <
1

(�� 1)(n+ k)
: (5)

For each edge, the reduction cost function ce is given by ce(0) = 0 and ce(1� ") = 1.

(Since we are dealing with 0/1-reductions, the cost function needs to be speci�ed only

for these two values.) The cost budget B is set to n+ k, where k is the bound on the

size of the set cover.

Suppose there is a set cover Q0 = fQi1 ; Qi2 ; : : : ; Qikg of size k. Consider the Steiner

tree T in G consisting of x, the edges (x;Qij), 1 � j � k, and one edge from each

element node to some set node in Q0. (Since Q0 is a cover, each element node must be

adjacent to some set node in Q0.) Let r be the reduction de�ned by r(e) = 1 � " if

e 2 T and r(e) = 0 otherwise. It is easy to see that the total cost of r is n+k and that

the total length of T in the modi�ed graph is (n + k)". Thus, if there is a set cover

of size k, then the modi�ed graph has a Steiner tree of length at most (n+ k)". Since

A is a (�; 1) approximation algorithm, the length of a Steiner tree returned by A is at

most �(n+ k)".

Suppose there is no set cover of size at most k. Thus, at least k+1 sets are needed

to cover the elements. By our construction, any Steiner tree T 0 that connects together

12

the n + 1 nodes in R must have a total of at least n + k + 2 nodes, and consequently

at least n+ k+1 edges. Since the cost budget is at most n+ k, there must be at least

one edge of length 1 in T 0 and so the total length of T 0 is at least 1 + (n+ k)".

Using Equation (5), it can be veri�ed that �(n+k)" < 1+(n+k)". Therefore, using

A, we can solve an arbitrary instance of Set Cover in polynomial time, contradicting

the assumption that P 6= NP. 2

Corollary 6.5 Unless P = NP, for any � > 1, there is no polynomial time (�; 1) ap-

proximation for the (R-Upgrade-Total-Cost, Total Cost, Steiner Tree) and

(I-Upgrade-Total-Cost, Total Cost, Steiner Tree) problems even when re-

stricted to bipartite graphs.

Proof: Let us �rst consider the (R-Upgrade-Total-Cost, Total Cost, Steiner

Tree) problem. We use the same construction as above, except that for each edge e

the reduction cost function ce is given by ce(t) = t=(1� ") for t � 0, where " satis�es

Equation (5). By the same argument as in the proof of Theorem 6.4, it follows that if

there is a set cover of size k, a (�; 1)-approximation algorithm must return a reduction

r and a Steiner tree of length at most �(n + k)" under the modi�ed edge lengths.

Conversely, if there is no set cover of size at most k, then again any Steiner tree T

in the graph must contain at least n+ k + 1 edges. Since for t units of the budget the

weight of T can be reduced by at most (1 � ")t units, it follows that after modifying

the lengths for a budget of n+k the weight of T is at least 1+(n+k)". The remainder

of the proof is identical to that in the proof of Theorem 6.4.

For (I-Upgrade-Total-Cost, Total Cost, Steiner Tree), we let `min(e) = 1

and `(e) = 1 + (�� 1)(n + k) for all edges in the graph. We also de�ne ce(t) = t and

set the budget to (� � 1)(n + k)2. Now, the remainder of the proof is along the same

lines as above. 2

The following complementary non-approximability result for the above problems is

a direct consequence of the fact that the optimal Steiner tree problem is NP-hard even

for bipartite graphs [GJ79, Problem ND12, pages 208{209].

Observation 6.6 Unless P = NP, for any � > 1, there is no polynomial time (1; �) ap-

proximation algorithm for the (0/1-Upgrade-Total-Cost, Total Cost, Steiner

Tree), (I-Upgrade-Total-Cost, Total Cost, Steiner Tree) and (R-Upgrade-

Total-Cost, Total Cost, Steiner Tree) problems even when restricted to bi-

partite graphs. 2

6.2.2 Results for Diameter Problems

Our next proposition presents a negative result concerning the approximability of (I-

Upgrade-Total-Cost,Diameter, Spanning Tree) and (0/1-Upgrade-Total-

Cost, Diameter, Spanning Tree) problems. These results are obtained using a

reduction from the Set Cover problem and the following hardness result from [Fe95]

for Min Set Cover, an optimization version of Set Cover.

13

Theorem 6.7 Unless NP � DTIME(N log logN), for any 0 < � < 1, the Min Set

Cover problem, with a universe of size K, cannot be approximated in polynomial time

to within a � lnK factor. 2

Proposition 6.8 Unless NP � DTIME(N log logN), for any " > 0 and 0 < � < 1,

there is no polynomial time (11=10 � "; � lnB) approximation algorithm for either of

the problems (0/1-Upgrade-Total-Cost, Diameter, Spanning Tree) and (I-

Upgrade-Total-Cost, Diameter, Spanning Tree).

Proof: Given an instance of Set Cover, we �rst construct the natural bipartite

graph, with one side of the partition for set nodes Qj, j = 1; : : : ; m, and the other for

element nodes qi, i = 1; : : : ; n. We insert an edge fQj; qig i� qi 2 Qj. All these edges e

have length `(e) = `min(e) = 4. Now we add an enforcer node x and join it to all the

set nodes. For these edges e we de�ne `(e) = 2, `min(e) = 1. Finally, for each edge e,

we let ce(0) = 0 and ce(t) = 1 for any t > 0, and choose B = k.

The above construction yields both an instance of (I-Upgrade-Total-Cost, Di-

ameter, Spanning Tree) and an instance of (0/1-Upgrade-Total-Cost, Diam-

eter, Spanning Tree). Without loss of generality, we can assume that there is no

single set Qj covering all the elements in Q; i.e., Qj 6= Q for j = 1; : : : ; m. Then the

spanning tree T � in G0 with minimum diameter satis�es dia(T �) = 12, and a diametric

path of that tree is between any two element nodes that are not adjacent to the same

set node.

Observe that any feasible reduction r corresponds to a choice of at most B = k sets

from the collection Q1; : : : ; Qm.

Given any integer reduction r it is easy to see that there is a spanning tree in G0

(with edge lengths given by `�r) with diameter 10, if the selection of sets corresponding

to the reduction covers all the elements in Q, and that the diameter of G0 (again with

edge lengths given by `� r) is at least 11, if the selection does not form a cover.

For expository reasons, we �rst argue that, unless P = NP, there is no polynomial

time (11=10 � "; 1) approximation algorithm for the problem. Suppose A is such an

algorithm. If there is a set cover of size k or less, then A must return a reduction A(r)

yielding a spanning tree of diameter at most 10. On the other hand, if there is no set

cover, then the best tree we can obtain by modifying the network has diameter 11.

Thus Algorithm A can be used to decide an arbitrary instance of Set Cover.

We now turn to the proof of the result stated in the proposition. Suppose A is an

algorithm that provides a performance guarantee of (11=10� "; � lnB) for some " > 0

and 0 < � < 1. Given any instance I of Min Set Cover, we construct the graph

G0 as above. Then we run the algorithm A for the budgets B = 1; : : : ;minfn;mg.

Observe that this will still result in an overall polynomial time. Let Bmin denote the

minimum budget in f1; : : : ;minfn;mgg such that A returns a reduction A(r) resulting

in a spanning tree of diameter 10. By the above observations and the fact that the

algorithm spends at most �B lnB units of money, we see that there must be a set

cover of size at most �B lnB. By the choice of Bmin there can be no set cover of size

14

strictly less than Bmin. Thus we can approximate the minimum set cover by a factor

of no more than � lnBmin � � lnn. 2

7 Approximation Algorithm for General Graphs

In this section, we present our approximation algorithm for the (R-Upgrade-Total-

Cost, Total Cost, Spanning Tree) problem. As mentioned earlier, the approx-

imation algorithm extends easily to a broad class of network improvement problems

where the objective to be minimized is the total cost of a connected subnetwork (e.g.

budget constrained minimum Steiner tree problem).

7.1 High Level Description

We �rst give an informal description of the algorithm. The main procedure uses a

parametric search. In this search, the algorithm tries to �nd a good compromise

between weighing the total length and the corresponding reduction cost of a tree in

general. To this end, the algorithm performs a binary search with parameter K on

the interval I := [1

(n� 1)min

e2E
`min(e);

1

(n� 1)max

e2E
`(e)]. Note that if MSTG(`� r�)

denotes the total weight of a minimum spanning tree after an optimal reduction r�

then 1

MSTG(`� r�) 2 I.

For each K 2 I, which is probed with the help of a test procedure during the search,

the algorithm �rst calculates a coarse heuristic measure that indicates how important

it is to shorten an edge. Then, for each edge e in the graph, the blend of its length

and the reduction cost is re�ned using the cost function ce. After calculating such

compound costs for the edges, we compute a minimum spanning tree with respect to

these costs. The algorithm stops when a good blend has been found, meaning in this

context that there exists a tree of total compound cost that is small compared to the

current parameter K.

For large values of K the reduction costs on the edges are weighted more than their

lengths and the algorithm will tend to reduce the edge lengths only by a small amount,

resulting in low overall reduction costs and more or less heavy trees. Also, since K

is large, the test on the compound cost of the minimum spanning tree computed will

succeed. The algorithm now tries to reduce K as much as possible and �nd a minimum

K 2 I such that it can successfully compute a light compound cost spanning tree.

Our approximation algorithm for (R-Upgrade-Total-Cost,Total Cost, Span-

ning Tree) is shown in Figure 4. This algorithm uses the test procedure given in

Figure 5.

7.2 Correctness and Performance Guarantee

We now turn to prove the performance guarantee provided by the algorithmHeuristic-

Upgrade. We �rst prove some preliminary lemmas.

15

Heuristic-Upgrade(; ")

1 Perform a binary search on the interval

I =

2
4(n� 1)min

e2E
`min(e)

;
(n� 1)max

e2E
`(e)

3
5 (6)

with a spacing of " to �nd the minimum valueK 0 2 I such thatTest-Blend(K 0)

returns \Yes".

2 Let T 0 be the tree generated by Test-Blend(K 0) and let te (e 2 T 0) be the

corresponding \�ne tuned" blend parameters.

3 De�ne the reduction r by r(e) := 0 if e is not included in T and by r(e) := te
otherwise.

4 return r and T .

Figure 4: Main Procedure for the approximation of (R-Upgrade-Total-Cost, To-

tal Cost, Spanning Tree).

Test-Blend(K)

1 Comment: This procedure tries to estimate whether in the current blend of

lengths and reduction costs, the costs are weighted strongly enough (i.e., K large

enough) resulting in a low cost reduction. For this purpose, it uses the heuristic

measure computed in Step 2.

2 for each edge e let hK(e) = min
t2[0;`(e)�`min(e)]

�
`(e)� t+ K

B
ce(t)

�
.

Also, let te be the value of t which achieves the value hK(e).

3 Compute a minimum spanning tree T in G using the weight hK(e) for each e 2 E.

Let hK(T) denote the cost of this spanning tree.

4 if hK(T) � (1 +)K then return \Yes" else return \No".

Figure 5: Test procedure used for the approximation of (R-Upgrade-Total-Cost,

Total Cost, Spanning Tree).

16

The proof of performance relies mainly on the following lemma, which ensures that

the binary search in the main procedure works correctly. In stating this lemma, we

use the notation introduced in the two procedures (Heuristic-Upgrade and Test-

Blend) described above.

Lemma 7.1 De�ne F on IR>0 by F (K) := MSTG(hK)
K

. Then F is monotonically non-

increasing on IR>0.

Proof: Let K(1) and K(2) be two positive numbers such that K(1) < K(2). For i = 1; 2

let T (i) be a minimum spanning tree in G under the cost function hK(i). Then

hK(i)(T (i)) =
X

e2T (i)

hK(i)(e) =
X

e2T (i)

(`(e)� t(i)e)

| {z }
=: L(i)

+
K(i)

B

X
e2T (i)

ce(t
(i)
e)

| {z }
=: C(i)

=: `(i) +
K(i)

B
C(i):

(7)

Here t(i)e are the values chosen in Step 2 of Test-Blend which minimize `(e)� t+
K(i)

B
ce(t) on the interval [0; `(e) � `min(e)]. By dividing the last equation by K(i) we

obtain that

F (K(i)) =
L(i)

K(i)
+
C(i)

B
for i 2 f1; 2g: (8)

In the next step we �nd an upper bound for F (K(2)). To this end, we estimate the

weight of each edge in T (1) under the cost function hK(2). Let e 2 T (1) be an arbitrary

edge. Then by the choice of t(2)e in Step 2 of Test-Blend we have that

hK(2)(e) = `(e)� t(2)e +
K(2)

B
ce(t

(2)
e)

= min
t2[0;`(e)�`min(e)]

`(e)� t+

K(2)

B
ce(t)

!

� `(e)� t(1)e +
K(2)

B
ce(t

(1)
e): (9)

Summing up the inequalities in (9) over all e 2 T (1), we obtain:

hK(2)(T (1)) � L(1) +
K(2)

B
C(1): (10)

Dividing (10) by K(2) and using the fact that hK(2)(T (2)) � hK(2)(T (1)) this results

in

F (K(2)) �
L(1)

K(2)
+
C(1)

B
<

L(1)

K(1)
+
C(1)

B
= F (K(1)): (11)

The strict inequality in the chain above stems from the fact that K(1) < K(2). This

completes the proof of the lemma. 2

17

Corollary 7.2 If the procedure Test-Blend returns \Yes" for some K 0 > 0 then

it also returns \Yes" for all K > K 0. Thus, the binary search in Heuristic-(R-

Upgrade-Total-Cost, Total Cost, Spanning Tree) works correctly.

Proof: Let T 0 be a minimum spanning tree with respect to hK0. Then, since the test

procedure Test-Blend(K 0) returns \Yes" we have that hK0(T 0) � (1 +)K 0; i.e.,

F (K 0) � (1 +). Thus it follows by Lemma 7.1 that F (K) � (1 +) for all K > K 0.

Since F (K) = MSTG(hK)
K

, this is equivalent to saying that MSTG(hK) � (1 +)K for

all K > K 0. 2

We now prove the performance of the algorithm.

Theorem 7.3 For any �xed ; " > 0, Heuristic-Upgrade is an approximation al-

gorithm for (R-Upgrade-Total-Cost, Total Cost, Spanning Tree) that �nds

a solution whose length is at most (1 + 1

) times that of a minimum length spanning

tree plus an additive constant of at most ", and the total cost of the improvement is at

most (1 +) times the budget B.

Proof: Let r� be an optimal feasible reduction and let T � be a minimum spanning

tree in G with respect to the weight function ` � r�. For the sake of shorter notation

let L� := (`� r�)(T �) be its total weight in the graph with the edge lengths resulting

from the optimal reduction r�.

We now show Test-Blend would return \Yes" if called with the value ~K which

is the smallest value in the "-spacing of the interval I from (6) satisfying ~K � L�=.

Thus, ~K is some rational number satisfying the equation

~K = L�= + "0 (12)

where 0 � "0 < ".

For each edge e 2 T � we can estimate the weight hK�(e) similar to inequality (9)

in the proof of Lemma 7.1. This way, we see that the weight of T � under h ~K is no

more than L� +
~K
B
B. Consequently, the minimum spanning tree with respect to h ~K

that would be found by the procedure during the call has h ~K-weight at most

L� + ~K
(12)
= (~K � "0) + ~K � (1 +) ~K:

Hence, the test in Step 4 of Test-Blend would be successful and the procedure

would return \Yes". Since we know by Corollary 7.2 that the binary search correctly

locates a minimum value K 0, this now implies that the minimum value K 0 must satisfy

K 0 � ~K = L�=+"0. Let T 0 be the minimum spanning tree found by Test-Blend(K 0).

Since K 0; B � 0 and ce(t) � 0 for all t, we have:

hK0(T 0) =
X
e2T 0

(`(e)� t0e) +
K 0

B

X
e2T 0

ce(t
0
e) �

X
e2T 0

(`(e)� t0e): (13)

18

Here again the numbers t0e are the values of t chosen in Step 2 of the test procedure.

For the reduction r which is calculated in Step 3 of Heuristic-(R-Upgrade-Total-

Cost, Total Cost, Spanning Tree) it now follows from (13) that

MSTG(`� r) � (`� r)(T 0) � hK0(T 0): (14)

Moreover,

hK0(TK0) � hK0(T �) � L� +
K 0

B
B � L� + ~K

(12)
= L� +

L�

+ "0 � (1 +

1

)L� + "

= (1 +
1

)MSTG(`� r�) + ":

Using this result in (14), we get MSTG(` � r) � (1 + 1

)MSTG(` � r�) + ", which

proves the claimed performance of the algorithm with respect to the weight of an MST

in the graph after applying the reduction r.

We now estimate the cost of the reduction r found by our heuristic. Note that the

cost of r is exactly
P

e2T 0 ce(te). We have

K 0

B

X
e2T 0

ce(t
0
e) �

X
e2T 0

(`(e)� t0e +
K 0

B
ce(t

0
e)) = hK0(T 0) � (1 +)K 0:

Dividing the last chain of inequalities by K0

B
yields that the budget B is violated by

a factor of at most (1 +) as claimed in the theorem. 2

7.3 Running Time

We now show that the algorithm can be implemented to run in polynomial time for

a broad class of reduction cost functions ce on the edges of the graph. Let Lmax =

max
e2E

`(e). Then the total number of calls to Procedure Test-Blend is O(log(nLmax

"
)).

Since and " are �xed, the test procedure is called only a polynomial number of

times. Thus, to prove that the overall running time of the algorithm is polynomial, it

su�ces to show that each execution of Test-Blend can be completed in polynomial

time. Here, the only condition to show is that we can minimize the function fe(t) :=

`(e) � t + K
B
ce(t) on the compact interval I 0 := [0; `(e) � `min(e)] in Step 2 of the

procedure in polynomial time. The rest of the procedure consists of computing a

minimum spanning tree which can be done in O(n + m log�(m;n)) time using the

algorithm of Gabow et. al. [GGST86], where �(m;n) = minfi j log(i) n � m=ng.

Consider the execution of Test-Blend for a given value of K. Observe that in

Step 2 the number `(e) is an additive constant and K
B
is a constant factor. Thus, the

constrained minimization of fe can be done easily for for the following sample classes

of functions ce:

19

1. Linear functions, that is, ce(t) = ce � t for some constant ce: Then fe is a linear

function in t and the minimum is attained at one of the endpoints of I 0. Min-

imizing fe can be done in constant time. Thus, the total running time of the

heuristic is O(log(nLmax

"
)(n +m log �(m;n))). We will show in Section 8 how to

improve the algorithm for this particular class of functions.

2. Concave functions: Let �(e) := `(e)� `min(e). Then, for any 0 < � < 1 we have

by the concavity of ce (which implies the concavity of fe):

fe(� � 0 + (1� �)�(e)) � �fe(0) + (1� �)fe(�(e)) � min ffe(0); fe(�(e))g :

Thus, the minimum of fe is again either at 0 or at `(e)� `min(e).

3. Di�erentiable convex functions where we can �nd a root of the equation c0e(t) =
B
K

explicitly.

4. Functions that are piecewise of one of the types described above. Observe that

the number of pieces is polynomial in the input size.

For the �rst three classes of functions mentioned above, the total computational

e�ort of our algorithm consists essentially of O(log(nLmax

"
)) minimum spanning tree

computations, which results not only in an overall polynomial time but also in a com-

plexity that is feasible in practice.

7.4 Notes on the Algorithm

It should be noted that our AlgorithmHeuristic-Upgrade can be modi�ed easily to

handle instances of (I-Upgrade-Total-Cost, Total Cost, Spanning Tree) and

(0/1-Upgrade-Total-Cost, Total Cost, Spanning Tree), that is, the cases

where the reduction is required to be either integer valued or to satisfy r(e) 2 f0; `(e)�

`min(e)g for all e 2 E. For these cases, Step 2 of Test-Blend is modi�ed in such a

way that the minimization is carried out only over the integers in [0; `(e)� `min(e)] or

on the two element set f0; `(e)� `min(e)g respectively.

Integer valued reductions are helpful to model discrete steps of improvement, e.g.

the addition of a number of communication links parallel to existing ones in the net-

work. 0/1-Reductions can be used the model the insertion of alternative edges to the

graph G, with the reduction of the edge e corresponding to the construction of a new

edge e0 parallel to e with length `min(e).

So far, we have assumed that the function fe(t) = `(e) � t + K
B
ce(t) can be mini-

mized exactly . This indeed is not necessary to obtain a constant factor approximation

algorithm for (R-Upgrade-Total-Cost, Total Cost, Spanning Tree). In fact,

one can show that if in Step 2 of procedure Test-Blend we �nd a value t0 satisfying

fe(t
0) � � � min

t2[0;`(e)�`min(e)]
fe(t)

20

for some � � 1 and modify Step 4 to check whether the compound weight of the tree

is at most �2(1 +)K, this will lead to a polynomial time algorithm which produces a

reduction of cost at most �2(1+)B and a corresponding MST of total length at most

�(1 + 1=) times that of an optimal tree plus an additive constant of ".

8 Faster Algorithm for Linear Reduction Costs

In this section we show how to improve the performance and the running time of the

approximation algorithm from Section 7 in the case that the reduction costs on the

edges are linear ; i.e., ce(t) � ce � t for all e 2 E.

The �rst observation for the improved algorithm is the following: In Step 2 of

procedure Test-Blend the linear function fe(t) := `(e) + t(K
B
ce � 1) is minimized

over the interval [0;�(e)], where again �(e) = `(e) � `min(e). At which of the two

endpoints of the interval the minimum is attained depends solely on the factor K
B
ce�1.

If K
B
ce � 1 � 0, that is, if K � B=ce, then fe attains its minimum at �(e). Otherwise,

fe is minimized at 0.

8.1 The Structure of the Compound Weights

Observe that the hK-weight of an edge e is given by

hK(e) :=

(
`min(e) +K (`(e)�`min(e))ce

B
if K < B=ce

`(e) if K � B=ce:
(15)

Thus, for each edge e, the compound weight hK(e) viewed as a function of K is a

linear function with exactly one breakpoint at B=ce. For K � B=ce, the function has

the constant value `(e), while for K � B=ce it has slope
(`(e)�`min(e))ce

B
.

If we plot the compound weight hK(e) for each edge e 2 E, for increasing K we get

a linear function with exactly one breakpoint. This breakpoint is at B=ce. Figure 6

shows an example of plots of these compound weights.

It is easy to see that, given two edges e and e0, their ordering with respect to the

compound weights hK changes at most twice when K varies. Also, these at most two

values of K, can be computed in constant time.

8.2 The Basic Idea for the Improved Algorithm

Let K� 2 I be the overall minimum value such that Test-Blend(K) would return

\Yes" if called with K = K� (the interval I is de�ned in (6)). We can use the the

analysis from Section 7 to show that K� � L�=, where L� again denotes the length of

an optimal reduced tree for a budget of B.

We now have the following important lemma:

21

K

e2

hK

B=ce1 B=ce4B=ce2 B=ce3

e4

e1

e3

Figure 6: Compound weight hK of edges for increasing K.

Lemma 8.1 If the ordering of the edges with respect to their hK�-weights is known,

we can construct a tree T and a reduction r in time O(n + m log�(m;n)) with the

following properties:

(i) The cost
P

e2E cer(e) of the reduction r is at most (1 +)B.

(ii) The weight (`� r)(T) in the modi�ed graph is no more than (1 + 1=)L�.

Proof: Observe that, if we knew the hK�-weights of the edges in the tree T , we could

now construct a reduction r0 just as in Step 3 of Heuristic-Upgrade. Using exactly

the same argument as in the proof of Theorem 7.3 but now using that K� � L�=

instead of K 0 � L�= + ", it then follows that

(`� r0)(T) � (1 + 1=)L�;

and that the cost of the reduction r0 is at most (1 +)B.

But by the assumption of the lemma, we only have knowledge only about the

ordering of the edges and not about K� or hK�. We overcome this problem as follows.

Given the ordering of the edges according to their weights, we can use the minimum

spanning tree algorithm of Gabow et. al. [GGST86] to compute a minimum spanning

tree with respect to the hK�-weights, without actually knowing these weights. The

ordering su�ces for this purpose.

Recall from Section 5 that, given a tree and a budget, we can construct an optimal

reduction on the tree for that budget in O(n) time by a Greedy-type algorithm that

repeatedly reduces the length of the cheapest edge until the budget is exhausted. Thus,

if we compute such a reduction r on our tree T with the budget set to (1 +)B, the

length of T under ` � r will be at most (` � r0)(T), which in turn is bounded from

above by (1 + 1=)L�. 2

22

Lemma 8.1 suggests �nding an ordering of the edges in the graph according to

their compound weight at K�. In the sequel we will show how using a technique of

Megiddo [Meg83] this can be accomplished e�ciently.

Basically we wish to sort the set S := fhK�(e1); : : : ; hK�(em)g where K� is not

known. However, for any K we can decide whether K� � K or K� > K by one MST

computation: We compute an MST with respect to edge weights given by hK and

compare its weight to (1 +)K. If the weight is bounded from above by (1 +)K,

then we know that K� � K. Otherwise, we can conclude that K� > K.

To simplify the presentation, we will �rst sketch the main idea before going into

details. Imagine applying a (sequential) sorting algorithm to S. The sorting algorithm

would start by comparing some values hK�(e) and hK�(e0). Then, we could do the the

following: We compute the values of K such that the ordering of e and e0 with respect

to the compound weight hK changes. As seen earlier these are at most two values of

K. We compute a minimum spanning tree for each of these \critical values" Ke;e0, and

then decide whether K� � Ke;e0 or K
� > Ke;e0. Since the ordering of the edges e and

e0 only changes at the intersection points, we can decide whether hK�(e) � hK�(e0) or

vice versa. Thus, by O(1) MST computations we can answer a comparison.

Using the idea from above in conjunction with a standard sequential sorting algo-

rithm (which makes O(m logm) comparisons), we could �nd the ordering of the edges

at K� by O(m logm) MST computations. However, using Megiddo's technique from

[Meg83] we can speed up the algorithm substantially.

8.3 Finding the Ordering with Respect to hK� Faster

The crucial trick is to use a clever adaption of a sequentialized parallel sorting algorithm

such as Cole's scheme [Col88]. Recall that a comparison essentially consists of a MST

computation, so comparisons are expensive. Using the parallel sorting scheme, we

basically accept a greater total number of comparisons, but we can use the parallelism

to group the independent comparisons made in one stage of the parallel machine and

then answer all of them together e�ciently.

Cole's algorithm uses m processors to sort an array of m elements in parallel time

O(logm). Recall that in our case m = jEj is the number of edges in the graph

G = (V;E). The algorithm is simulated serially, employing one \processor" at a time,

according to some �xed permutation, letting each perform one step in each cycle.

When two values hK�(e) and hK�(e0) have to be compared, we compute the at most

two critical values where the ordering changes (but we do not answer the comparison

yet). The crucial observation is that the critical values can be computed independently,

meaning that each of the \processors" does not need any knowledge about the critical

points computed by the other ones.

After the �rst of the O(logm) stages, we are given at most 2m critical values of

K, say K1 � K2 � � � � � Kr with r � 2P . For convenience set K0 := �1 and

Kr+1 := +1. Using binary search, we �nd an interval [Ki; Ki+1], where K
� must be

contained.

23

This is done in the following way: Start with low := �1 and high := +1. Then

compute the median M := Kb(r+1)=2c of the Kj in O(r) time. We then decide whether

K� �M by computing a MST T with edge weights given by hM : If hM(T) � (1+)M ,

then we know that K� �M . Otherwise, K� > M . In the �rst case, we set high :=M

and remove all values Kj with Kj > M from our set of critical values. Similarly, in

the second case we set low := M and remove the values smaller than the median M .

Clearly, this can be done in O(r) time. Since M was the median of the Kj the number

of critical values decreases by a factor of one half.

Then, the total time e�ort T ime(r) for the binary search satis�es the recurrence:

T ime(r) = T ime(r=2) + TMST +O(r);

where TMST is the time needed for one MST computation. The solution of the recur-

rence is T ime(r) = O(r + TMST log r). Since r 2 O(m), this shows that we obtain the

interval [Ki; Ki+1] containing K
� by O(logm) MST computations plus an overhead of

O(m) elementary operations.

Notice that by construction the interval [Ki; Ki+1] does not contain any critical

points in the interior. If Ki = Ki+1, then we know that K� = Ki = Ki+1. This way we

have determined K�. In this case we can compute the order of all edges with respect

to hK� in O(m logm) time and stop the modi�ed sorting algorithm. Lemma 8.1 then

enables us to compute a reduction with the properties (i) and (ii) stated there.

Otherwise, the interior of [Ki; Ki+1] is nonempty. We compute a minimum spanning

tree T with respect to hKi
and test whether hKi

(T) � (1+)Ki. If this is the case, then

K� � Ki, which implies that K� = Ki since we know that K� 2 [Ki; Ki+1]. Again, the

adopted sorting procedure can stop after having computed the ordering of all edges

with respect to hK�.

The remaining case is that Ki < K� � Ki+1. In this case it is easy to see that

answering the comparisons from the �rst round by inspecting the weights h� , where

� 2 (Ki; Ki+1) is any interior point of the interval [Ki; Ki+1], gives the same results as

answering the comparisons with respect to the hK�-weights.

Thus, at the end of the the �rst round, our algorithm has either found K� and

thus the ordering of all edges in the graph with respect to their hK�-weights, or we

can answer the comparisons from the �rst round using the ordering of the edges with

respect to h� .

The above process is repeated O(logm) times, once for each parallel step of the

parallel sorting machine. Since in each of the O(logm) rounds we answer all com-

parisons of the parallel sorting scheme, upon termination we have found the ordering

of the edges with respect to the hK�-weights. We then use Lemma 8.1 to compute a

reduction strategy r and a tree T .

The time needed for the algorithm above can be estimated as follows: There are

O(logm) cycles altogether. In each round we evaluate O(m) intersection points. Also,

we need O(logm) minimum spanning tree computations plus the overhead of O(m).

This results in an overall time of O(m logm + TMST log
2m), where TMST = O(n +

24

m log�(m;n)) is the time needed for computing a minimum spanning tree. This gives

us the following theorem:

Theorem 8.2 For any �xed > 0 the algorithm presented above is a (1+1=; 1+)-

approximation algorithm for (R-Upgrade-Total-Cost, Total Cost, Spanning

Tree) with linear reduction costs. The running time of the algorithm is O(n log2 n +

m log2 n log�(n;m)). 2

9 Extension to Steiner Trees and Other Networks

The technique used to obtain results for the (R-Upgrade-Total-Cost, Total

Cost, Spanning Tree) problem in Section 7 is quite general. Speci�cally, Given

any �-approximation algorithm for �nding a subgraph S 2 S minimizing the objective

Total Cost, the method allows us to obtain a ((1 + 1=)�; (1 +)�)-approximation

algorithm for the (R-Upgrade-Total-Cost, Total Cost, S) problem. For exam-

ple, using this technique in conjunction with the results of Goemans et al. [GGP+94],

we get the �rst approximation results for edge based improvement problems such

as �nding minimum-cost generalized Steiner trees, minimum k-edge connected sub-

graphs, or other network design problems speci�ed by weakly supermodular func-

tions. Thus for example, we get (O(1); O(1))-approximation algorithms for the (R-

Upgrade-Total-Cost, Total cost, Generalized Steiner tree) and (R-

Upgrade-Total-Cost, Total cost, k-edge connected subgraph) problems.

(See [AK+95, GW92, KV+94] for the results on the corresponding unicriterion prob-

lems.) We illustrate these extensions by briey discussing the modi�cations necessary

for obtaining an approximation algorithm for the (R-Upgrade-Total-Cost, To-

tal Cost, Steiner Tree) problem. Let Approx-Steiner denote a � approxima-

tion algorithm for the Steiner tree problem. (For example, we can use the 11/6

approximation algorithm by Zelikovsky [Ze94].) In Step 3 of the test procedure dis-

played in Figure 5, we call Approx-Steiner to compute an approximate solution

to the Steiner tree problem in G using the weight hK(e) for each e 2 E. Let

MSTEINERTG denote a minimum cost Steiner tree in G. Then, it is straightforward

to see that Lemma 7.1 holds even if replace MSTG by MSTEINERTG. Finally, it is

easy to see that proof of Theorem 7.3 carries over with an additional factor of � in

the performance for the budget as well as the cost of the tree. Thus, for all > 0,

and for some 1 � � < 2, we get a ((1 + 1=)�; (1 +)�) approximation algorithm

for the (R-Upgrade-Total-Cost, Total Cost, Steiner tree) problem. In

contrast, recall (Theorem 6.4) that unless P = NP, for any � > 1, there is no poly-

nomial time (�; 1) approximation for the (R-Upgrade-Total-Cost, Total Cost,

Steiner Tree) problem even when restricted to bipartite graphs.

The above discussion leads us to state a general result for this case. Let � be

one of the unicriterion edge cost based problems (Total Cost, S) considered in

[AK+95, GW92, KV+94, BR+95].

25

Theorem 9.1 Suppose there is a polynomial time � approximation algorithm for a

problem �. If the modi�ed network contains a feasible subgraph in S, then for all

 > 0, there is a polynomial time ((1 + 1=)�; (1 +)�) approximation algorithm for

the (R-Upgrade-Total-Cost, Total Cost, S) problem. 2

It can be seen that the above theorem can be generalized from the bicriteria case

to the multicriteria case (with appropriate worsening of the performance guarantees).

10 Improved Algorithm for Treewidth Bounded Graphs

and Linear Costs

In this section we will show how to obtain an improved algorithm for the class of

treewidth bounded graphs when the reduction costs on the edges are linear . A class of

treewidth-bounded graphs can be speci�ed using a �nite number of primitive graphs

and a �nite collection of binary composition rules. We use this characterization for

proving our results. A class of treewidth-bounded graphs � is inductively de�ned as

follows [BL+87].

1. The number of primitive graphs in � is �nite.

2. Each graph in � has an ordered set of special nodes called terminals. The

number of terminals in each graph is bounded by a constant, say k.

3. There is a �nite collection of binary composition rules that operate only at ter-

minals, either by identifying two terminals or adding an edge between terminals.

A composition rule also determines the terminals of the resulting graph, which

must be a subset of the terminals of the two graphs being composed.

The basic idea behind the algorithm in this section is to reduce the problem of

improving the tree to some appropriately chosen bicriteria problem. To this end we

recall the following result from [MRS+95]:

Theorem 10.1 1. There is a polynomial-time algorithm that, given an undirected

graph G on n nodes with two nonnegative integral costs E and F on its edges, a

bound E, and a �xed > 0, constructs a spanning tree of G of total E-cost at most

(1+)E and of total F -cost at most (1+1=) times that of the minimum-F -cost

of any spanning tree with total E-cost at most E.

2. For the class of treewidth-bounded graphs, there is a polynomial time algorithm

that returns a spanning tree of total E-cost at most E and and of total F -cost at

most (1 + ") times that of any spanning tree with total E-cost at most E .

3. There is a polynomial-time algorithm that, given an undirected graph G on n nodes

with two nonnegative integral costs E and F on its edges, a bound D, and a �xed

26

" > 0, constructs a spanning tree of G of diameter at most 2dlog2 neD under the

E-costs and of total F -cost at most (1 + ")dlog2 ne times that of the minimum-

F -cost of any spanning tree with diameter at most D under E. 2

We use the second part of the theorem to obtain an improved approximation for

treewidth-bounded graphs under linear reduction costs as follows. First, we transform

the original graph into another graph that can be fed into the algorithm from The-

orem 10.1. To this end, we replace each edge e = (u; v) of the original graph by a

certain subgraph in such a way that the treewidth does not increase. The transforma-

tion procedure is shown in Figure 7 and an example of a transformation is displayed

in Figure 8.

Let G be the original graph and G0 be the graph obtained as a result of the trans-

formation. Also, let tw(G) and tw(G0) denote the treewidths of G and G0 respectively.

We have the following observation.

Observation 10.2 Whenever tw(G) � 3, we have that tw(G) = tw(G0). 2

Transform(")

1 for each edge e = (u; v) in the graph let be be chosen so that (1 + ")be � `(e) �

`min(e) � (1 + ")be+1.

2 Add be+2 new vertices rk, k = �1; 0; : : : ; be, which are joined together in a simple

cycle.

3 for all k;�1 � k � be, join rk to both u and v.

4 For k � 0, the edge (u; rk) has E-cost E(u; rk) := `(e) � (1 + ")k and F -cost

(1 + ")kce, while the edge (u; r�1) has E-cost `(e) and F -cost 0. All the edges

(rk; v) and (rk; rk+1) have their E-cost and F -cost set to zero.

(An example of the above transformation for be = 2 can be seen in Figure 8).

Figure 7: Procedure used to transform G to G0 in the approximation of (R-Upgrade-

Total-Cost, Total Cost, Spanning Tree) on treewidth bounded graphs.

10.1 Correctness and Performance Guarantee

Let r� denote the optimal reduction involving a cost of at most B, let T � be a minimum

spanning tree in r�(G) and let L� := MSTG(`�r�) be its weight in the modi�ed graph.

Also, let T 0 be a tree in G0 with minimum total F -cost F 0 := F (T 0) among all trees in

G0 that have E-cost at most !. The performance guarantee provided by Heuristic-

TW-Upgrade shown in Figure 9 is summarized in the following theorem:

Theorem 10.3 For the class of treewidth bounded graphs and linear reduction costs

the following statement holds: For all �xed " > 0, Heuristic-TW-Upgrade is a

((1 + "); (1 + "))-approximation algorithm for (R-Upgrade-Total-Cost, Total

Cost, Spanning Tree).

27

u

G G0 for be = 2

r2

r1

v

r0

r�1

u

v

Figure 8: Example for the transformation on treewidth bounded graphs.

Heuristic-TW-Upgrade(")

1 Call Transform(") to obtain a new graph G0.

2 Let B0 := (1 + ") �B

3 Use binary search to �nd the smallest integer L0 2 [(n � 1)(min
e2E

`min(e)); (n �

1)(max
e2E

`(e)) such that the algorithm referred to in Part 2 of Theorem 10.1 called

with the parameters L0 for the E-cost bound E and " > 0 returns a tree of F -cost

at most B0.

4 Let T 0 be the tree generated by the algorithm from Theorem 10.1.

5 For each edge e = (u; v), de�ne the reduction r on e by r(e) := 0 if (u; r�1)

is included in T 0 and otherwise by r(e) := (1 + ")k, where 0 � k � be is the

minimum value such that (u; rk) is included in T 0.

6 return r.

Figure 9: Main Procedure for the approximation of (R-Upgrade-Total-Cost, To-

tal Cost, Spanning Tree) on treewidth bounded graphs.

28

Proof: Let us �rst understand the relationship between B0 and B and that between

F 0 and L�. Consider the tree T � in G. We can de�ne a tree T 00 in G0 in the following

way: For an edge e = (u; v) 2 T � that is reduced by r�(e) we select an edge (u; rj) in

G0 of E-cost `(e)� b(e), where b(e) is selected in such a way that b(e)
(1+")

� r�(e) � b(e).

We also select the edge (rj; v) to belong to T 00. Observe that the edge (u; rj) selected

in the above fashion has its length reduced by at most (1 + ") � r�(e) and at least by

r�(e). Using this fact the following claim can be proven.

Claim: The F -cost of the tree T 00 is at most (1 + ")B. The total E-cost of the tree

T 00 in G0 is at most L�. 2

Hence we have demonstrated a witness tree T 00 such that if the bound on the E-

length is L�, then the F -cost of this tree is bounded from above by B0 := (1 + ")B.

Consequently, the minimum F -cost tree T 0 in G0 (under the constraint that the E-cost

does not exceed L�) will have cost at most B0. Thus the binary search will terminate

with a value L0 � L�.

Speci�cally, for our algorithm sketched above, the total weight MSTG(`� r), where

r is the reduction returned by the heuristic, is then bounded from above by (1+")L0 �

(1 + ")L�. Moreover, the cost of reduction r which is de�ned in Step 5 of Heuristic-

TW-Upgrade is no more than the F -cost of the tree T 0, which is found with the help

of the algorithm from Theorem 10.1.

Since we know that the cost of this tree is bounded above by B0 = (1 + ") � B

by the fact that the binary search has indeed terminated with some L0, the claimed

performance guarantee with respect to the budget follows. 2

10.2 Running Time

We now show that the algorithm can be implemented to run in polynomial time. For

this, observe that for a �xed value of " > 0, the number of edges added (i.e., the value of

be) is polynomial in the size of the input. This proves that the procedure Transform

runs in time O(m logM) where M =
P

e2E `(e). Next, observe that the binary search

in the main procedure can be done in polynomial time. Thus the algorithm can be

executed in polynomial time.

10.3 Extensions and Related Remarks

In the following, we briey outline the extensions of the above technique in solving

other edge based network improvement problems.

First, by a slight extension of the ideas in [MRS+95] the above algorithm can

be modi�ed to obtain a (1 + �; 1) approximation algorithm for (R-Upgrade-Total-

Cost, Total Cost, Spanning Tree) for treewidth-bounded graphs. The basic idea

is to modify the algorithm in [MRS+95] to �nd a (1 + �; 1) approximation algorithm

to the bicriteria spanning tree problem. This combined with above procedure yields a

(1+�; 1) approximation algorithm for the (R-Upgrade-Total-Cost, Total Cost,

Spanning Tree) problem when restricted to the class of treewidth bounded graphs.

29

Second, we note that using the same techniques as in the case of treewidth-bounded

graphs and the Part 1 of Theorem 10.1, we can obtain a ((1 + 1=); (1 + ")(1 +))

approximation algorithm for the (R-Upgrade-Total-Cost, Total Cost, Span-

ning Tree) problem on general graphs with linear reduction costs, for any positive

value of and ". However, such an approximation algorithm would be inferior to the

approximation algorithm (Heuristic-Upgrade) given in Section 7 in the following

ways.

1. Even if we ignore the results of Section 8, the running time of Heuristic-

Upgrade as stated in Section 7 is O(log(nLmax
�

)TMST(n;m)) where Lmax is the

maximum length of an edge in G and TMST(n;m) is the time needed to com-

pute a minimum spanning tree in a graph with n nodes and m edges. The

approximation algorithm based on Part (1) of Theorem 10.1 would �rst con-

struct (using the transformation shown in Figure 7) a graph G0 by replacing

each edge of G by a subgraph with �(logB) edges and nodes. Thus, the re-

sulting graph G0 has �(n + m logB) nodes and �(m logB) edges. For this

graph, as discussed in [MRS+95], the parametric search procedure would run

in O(log (Lmax)TMST(n + m logB;m logB)) time. Using the best known value

for TMST(n;m) = n+m log�(m;n)) [GGST86], it can be seen that Heuristic-

Upgrade is faster by a factor of O(logB). This improvement in running time

is particularly signi�cant when the value of B is large. (For example, if B = 2m
2
,

the time improvement factor is O(m2).)

2. Heuristic-Upgrade provides a performance guarantee of (1 + 1=; 1 +) (ig-

noring the additive constant " which can be made arbitrarily close to zero), thus

improving the budget violation by the factor (1 + ").

3. As already mentioned, Heuristic-Upgrade can handle a variety of di�erent

cost functions while the approximation algorithm based on Theorem 10.1 works

only for linear cost functions.

4. Heuristic-Upgrade does not require any additional space while the other ap-

proximation algorithm carries out a transformation that increases the size of the

graph signi�cantly.

Finally, the transformation of Figure 7 along with Part (3) of Theorem 10.1 can be

used to obtain an (O(logn);O(logn)) approximation algorithm for the (R-Upgrade-

Total-Cost, Diameter, Spanning Tree) problem and its variants (0/1 and in-

teger reductions). The techniques immediately extend to the Steiner variants of the

problems. The ideas are almost identical and hence we omit the proof.

11 Conclusions and Future Work

We studied the complexity and approximability of several natural network improvement

problems. The results obtained in this paper are summarized in Table 1.

30

(Upgrade-Total-Cost, Total Cost, Steiner Tree) Problems

0/1 Integral Rational

Trees weakly NP-hard weakly NP-hard

Easy (linear ce)

weakly NP-hard

Easy (linear ce)

Treewidth

bounded

Graphs

NP-hard

(1 + "; 1)-approx.

NP-hard

(1 + "; 1)-approx.

NP-hard

(1 + "; 1)-approx.

General

Graphs

strongly NP-hard strongly NP-hard strongly NP-hard

hard to approx. within

(�; 1)

hard to approx. within

(�; 1)

hard to approx. within

(�; 1)

(2(1+1=); 2(1+")(1+

))-approx.

(2(1+1=); 2(1+")(1+

))-approx.

(2(1 + 1=); 2(1 +))-

approx.

Table 1: Approximation and Hardness Results for (Upgrade-Total-Cost, Total

Cost, Steiner Tree) and related problems. Similar results hold for other general

network design problems such as those considered in [GGP+94].

(Upgrade-Total-Cost, Diameter, Steiner Tree) Problems

0/1 Integral Rational

Trees weakly NP-hard weakly NP-hard weakly NP-hard

Treewidth

bounded

Graphs

NP-hard

(1 + "; 1)-approx.

NP-hard

(1 + "; 1)-approx.

NP-hard

(1 + "; 1)-approx.

General

Graphs

strongly NP-hard strongly NP-hard strongly NP-hard

also hard to approx.

within

(11=10�"; (1�"0) log n)

also hard to approx.

within

(11=10�"; (1�"0) log n)

also hard to approx.

within

(11=10�"; (1�"0) log n)

(O(log n);O(log n))-

approx.

(O(log n);O(log n))-

approx.

(O(log n);O(logn))-

approx.

Table 2: Approximation and Hardness Results for (Upgrade-Total-Cost, Diame-

ter, Steiner Tree) and related problems.

31

The results in this paper raise the following additional questions. One obvious open

question is to improve the performance guarantees of the problems considered in this

paper. Second, it is worth considering other related network improvement network

design problems. As a step in this direction, in [KN+96], we have considered node-

based network improvement problems and provided both hardness and easiness results

for a number of such problems. Third, as a step further, it is interesting in general

to look at other improvement problems for graphs. One such class of problems which

might be interesting are the location theoretic problems such as the k-center problem.

The paper by Berman [Ber92] represents the �rst work in this direction. Finally, it

would be interesting to look at the above problems for special classes of graphs such as

grid graphs, perfect graphs and investigate the existence of more e�cient algorithms

for the above problems restricted to these graph classes. As a step in this direction,

in [KN+96], we show that several problems considered here have a fully polynomial

approximation schemes (FPAS) when restricted to the class of treewidth bounded

graphs.

Acknowledgements: It is a pleasure to acknowledge various constructive discussions

with R. Ravi (Carnegie Mellon University) and Ravi Sundaram (Delta Trading Inc).

Several results in this paper were developed as a result of extensive discussions with

them. We thank Cynthia Phillips (Sandia National Laboratories) for useful conversa-

tions on related topics and pointers to literature. We also thank J. Plesnik for making

available copies of his papers.

32

References

[AC+93] S. Arnborg, B. Courcelle, A. Proskurowski and D. Seese, \An Algebraic

Theory of Graph Reductions," Journal of the ACM (JACM), vol. 40:5, pp.

1134-1164 (1993).

[AK+95] A. Agrawal, P. Klein and R. Ravi, \When trees collide: an approximation

algorithm for the generalized Steiner problem on networks," SIAM Journal

on Computing, vol.24, pp. 440-456 (1995).

[AL+91] S. Arnborg, J. Lagergren and D. Seese, \Easy Problems for Tree-

Decomposable Graphs," Journal of Algorithms, vol. 12, pp. 308-340 (1991).

[Ber92] O. Berman, Improving the location of minisum facilities through network

modi�cation, Annals of Operations Research 40 (1992), 1{16.

[BL+87] M.W. Bern, E.L. Lawler and A.L. Wong, \Linear -Time Computation of

Optimal Subgraphs of Decomposable Graphs," Journal of Algorithms, vol.

8, pp. 216-235 (1987).

[BR+95] A. Blum, R. Ravi and S. Vempala, \A constant-factor approximation algo-

rithm for the k-MST problem," To appear in the Proceedings of the 28th

Annual ACM Symposium on the Theory of Computation (1996).

[Bo88] H.L. Bodlaender, \Dynamic programming on graphs of bounded

treewidth," Proceedings of the 15th International Colloquium on Automata

Language and Programming, LNCS vol. 317, pp. 105-118 (1988).

[CKR+92] J. Cong, A. B. Kahng, G. Robins, M. Sarafzadeh, and C. K. Wong, Provably

good performance driven global routing , IEEE Transactions on Computer

Aided Design 11 (1992), no. 6, 739{752.

[Col88] R. Cole, Parallel merge sort , SIAM Journal on Computing 17 (1988), no. 4,

770{785.

[FSO96] G. N. Frederickson and R. Solis-Oba, Increasing the weight of minimum

spanning tree, Proceedings of the 7th Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA'96), January 1996, 539{546

[Fe95] U. Feige, \A threshold of lnn for approximating set cover," in the Proceed-

ings of the 28th Annual ACM Symposium on the Theory of Computation,

May 1996, 314{318.

[GGP+94] M. X. Goemans, A. V. Goldberg, S. Plotkin, D. B. Shmoys, E. Tardos,

and D. P. Williamson, Improved approximation algorithms for network de-

sign problems, Proceedings of the 5th Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA'94), January 1994, pp. 223{232.

33

[GGST86] H. N. Gabow, Z. Galil, T. H. Spencer, and R. E. Tarjan, E�cient al-

gorithms for �nding minimum spanning trees in undirected and directed

graphs, Combinatorica 6 (1986), 109{122.

[GJ79] M. R. Garey and D. S. Johnson, Computers and intractability (a guide to the

theory of NP-completeness), W.H. Freeman and Company, San Francisco,

CA, 1979.

[GW92] M. W. Goemans and D. P. Williamson, A general approximation technique

for constrained forest problems, Proceedings of the 3rd Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA'92), January 1992, pp. 307{316.

To appear in SIAM Journal on Computing.

[Has92] R. Hassin, Approximation schemes for the restricted shortest path problem,

Mathematics of Operations Research 17 (1992), no. 1, 36{42.

[KJ83] B. Kadaba and J. Ja�e, Routing to multiple destinations in computer net-

works, IEEE Transactions on Communication COM-31 (1983), 343{351.

[KV+94] S. Khuller and U. Vishkin, \Biconnectivity Approximations and Graph

Carvings," Journal of the ACM (JACM), vol. 41 , pp. 214-235, (1994).

[KN+96] S. O. Krumke, H. Noltemeier, M. V. Marathe, S. S. Ravi, R. Ravi and

R. Sundaram, On Optimal Strategies for Upgrading Networks, July 1996,

submitted for publication.

[KP95] D. Karger and S. Plotkin, Adding multiple cost constraints to combinatorial

optimization problems, with applications to multicommodity ows, Proceed-

ings of the 27th Annual ACM Symposium on the Theory of Computing

(STOC'95), May 1995, 18{25.

[KPP92a] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos, Multicasting for multi-

media applications, Proceedings of the IEEE INFOCOM'92, January 1992,

2078{2085.

[KPP93] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos, Multicast routing

for multimedia communication, IEEE/ACM Transactions on Networking

1 (1993), 286{292.

[LY94] C. Lund and M. Yannakakis, On the hardness of approximating minimiza-

tion problems, Journal of the ACM 41 (1994), no. 5, 960{981.

[Meg83] N. Megiddo, Applying parallel computation algorithms in the design of serial

algorithms, Journal of the ACM 30 (1983), no. 4, 852{865.

[MRS+95] M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz,

and H. B. Hunt III, Bicriteria network design problems, Proceedings of the

34

22nd International Colloquium on Automata, Languages and Programming

(ICALP'95), Lecture Notes in Computer Science, vol. 944, 1995, 487{498.

[Phi93] C. Phillips, The network inhibition problem, Proceedings of the 25th Annual

ACM Symposium on the Theory of Computing (STOC'93), May 1993, 288{

293.

[Pl81] J. Plesnik, The complexity of designing a network with minimum diameter ,

Networks 11 (1981), 77{85.

[Rav94] R. Ravi, Rapid rumor rami�cation, Proceedings of the 35th Annual IEEE

Symposium on the Foundations of Computer Science (FOCS'94), November

1994, pp. 202{213.

[RMR+93] R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt III,

Many birds with one stone: Multi-objective approximation algorithms, Pro-

ceedings of the 25th Annual ACM Symposium on the Theory of Computing

(STOC'93), May 1993, 438{447.

[War92] A. Warburton, Approximation of pareto optima in multiple-objective short-

est path problems, Operations Research 35 (1992), 70{79.

[ZPD94] Q. Zhu, M. Parsa, and W. Dai, An iterative approach for delay bounded

minimum Steiner tree construction, Tech. Report UCSC-CRL-94-39, Uni-

versity of California, Santa Cruz, October 1994.

[Ze94] A. Z. Zelikovsky, A 11/6-approximation algorithm for the Steiner problem

on networks, Algorithmica, 9 (1994), 463{470.

35

